The Poset Metrics That Allow Binary Codes of Codimension m -, (m-1)-, or (m-2)-Perfect
نویسندگان
چکیده
A binary poset code of codimension m (of cardinality 2n−m , where n is the code length) can correct maximum m errors. All possible poset metrics that allow codes of codimension m to be m-, (m − 1)-, or (m − 2)-perfect are described. Some general conditions on a poset which guarantee the nonexistence of perfect poset codes are derived; as examples, we prove the nonexistence of r-perfect poset codes for some r in the case of the crown poset and in the case of the union of disjoint chains.
منابع مشابه
Perfect Codes for Uniform Chains Poset Metrics
The class of poset metrics is very large and contains some interesting families of metrics. A family of metrics, based on posets which are formed from disjoint chains which have the same size, is examined. A necessary and sufficient condition, for the existence of perfect single-errorcorrecting codes for such poset metrics, is proved.
متن کاملThe poset structures admitting the extended binary Golay code to be a perfect code
Brualdi et al. [Codes with a poset metric, Discrete Math. 147 (1995) 57–72] introduced the concept of poset codes, and gave an example of poset structure which admits the extended binary Golay code to be a 4-error-correcting perfect P-code. In this paper we classify all of the poset structures which admit the extended binary Golay code to be a 4-error-correcting perfect P-code, and show that th...
متن کاملOn the inverse maximum perfect matching problem under the bottleneck-type Hamming distance
Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...
متن کاملOn the nonexistence of triple-error-correcting perfect binary linear codes with a crown poset structure
Ahn et al. [Discrete Math. 268 (2003) 21–30] characterized completely the parameters of singleand error-correcting perfect linear codes with a crown poset structure by solving Ramanujan–Nagelltype Diophantine equation. In this paper, we give a shorter proof for the same result by analyzing a generator matrix of a perfect linear code. Furthermore, we combine our method with the Johnson bound in ...
متن کاملThe (non-)existence of perfect codes in Lucas cubes
A Fibonacci string of length $n$ is a binary string $b = b_1b_2ldots b_n$ in which for every $1 leq i < n$, $b_icdot b_{i+1} = 0$. In other words, a Fibonacci string is a binary string without 11 as a substring. Similarly, a Lucas string is a Fibonacci string $b_1b_2ldots b_n$ that $b_1cdot b_n = 0$. For a natural number $ngeq1$, a Fibonacci cube of dimension $n$ is denoted by $Gamma_n$ and i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 54 شماره
صفحات -
تاریخ انتشار 2008